

Effective from Session: 2025- 26									
Course Code	MT523	Title of the Course	Statistical Machine Learning II	L	Т	Р	С		
Year	II	Semester	III 3				4		
Pre-Requisite	None	Co-requisite	None						
Course Objectives	The course objective	The course objective is to learn the basic concept Statistical Learning							
eouise exjeentes	The counce cojecute	ne course objective is to rear the basic concept Statistical Learning							

		Course Outcomes
Γ	CO1	Summarize multivariate data using numerical and graphical tools, detect outliers, measure multivariate distances,
		and reduce data complexity using PCA, EFA, and MDS.
	CO2	Apply discriminant analysis (LDA, QDA, logistic regression, Bayes), and perform clustering using similarity
		measures, hierarchical (Ward's) and non-hierarchical (K-means) methods, and perceptual mapping.
Γ	CO3	Interpret population and sample principal components, use biplots, apply orthogonal factor models, and estimate
		factor loadings and scores for dimension reduction.
	CO4	Understand Bayesian inference for single/multi-parameter models, hierarchical models, and perform model checking,
		posterior predictive analysis, and model comparison
Γ	CO5	Use Bayesian computation (MCMC, Gibbs, Metropolis, HMC, STAN), and apply Bayesian regression with
		single/multiple predictors, hierarchical and generalized linear models.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Multivariate Data Analysis	Multivariate data and its summaries (numeric and graphical), detection of outliers, making inferences from multivariate data, use of multivariate distance measures, reducing data complexity through Principal Component Analysis (PCA), Exploratory Factor Analysis (EFA), and basics of Multidimensional Scaling (MDS).	08	1
2	Classification and Clustering Techniques	Discriminant analysis using distance measures, assessing normality and data transformations, classification using Bayes theorem, linear and quadratic discriminant analysis (LDA & QDA), stepwise discriminant function analysis, canonical discriminant functions, logistic regression; introduction to clustering methods including similarity measures, hierarchical clustering (including Ward's method), non-hierarchical clustering (K-means), statistical model-based clustering, multidimensional scaling, correspondence analysis, and perceptual mapping.	08	2
3	Principal Components and Factor Analysis	Principal components for population and sample data, uses and applications of PCA, inference in large samples, graphical representation through biplots, orthogonal factor models for dimension reduction, estimation and interpretation of factor loadings and factor scores, and their role in understanding multivariate structure.	08	3
4	Fundamentals of Bayesian Inference and Analysis	Fundamentals of Bayesian inference including probability foundations, inference for single and multi-parameter models, asymptotic behavior and links with frequentist methods, introduction to hierarchical models; Bayesian data analysis involving model checking, posterior predictive checking (including graphical diagnostics), model evaluation and comparison using information criteria, cross-validation, and approaches to model expansion.	08	4
5	Bayesian Computation and Regression Models	Bayesian computation methods including MCMC simulations, Gibbs sampler, Metropolis and Metropolis-Hastings algorithms, diagnosing convergence, effective number of simulation draws, Hamiltonian Monte Carlo methods, and implementation using STAN; Bayesian regression models for single and multiple predictors, hierarchical linear models, and generalized linear models under the Bayesian framework.	08	5

Reference Books:

Gelman, A., John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari and Donald B. Rubin (2014): Bayesian Data Analysis. 3rd Edition. Chapman and Hill.

Peter, D. H. (2009): A First Course in Bayesian Statistical Methods. Springer-Verlag. New York

Rao, C. R. and Rao, M. M., Multivariate Statistics and Probability, 2014, Elsevier & Academic Press.

Richard A. Johnson and Dean W. Wichern, Applied Multivariate Statistical Analysis, 2017, 7th Edition, Prentice Hall India.

e-Learning Source:

https://www.youtube.com/watch?v=Os1iqgpelPw

			Cour	·se Articu	lation M	atrix: (M	apping of	COs with	POs and	l PSOs)		
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO												
CO1	2	-	-	-	-	-	3	3	3	3	3	3
CO2	2	-	-	-	-	-	3	3	3	3	3	2
CO3	3	-	-	-	-	-	3	3	3	3	3	2
CO4	3	-	-	-	-	-	3	3	3	3	3	3
CO5	3	-	-	-	-	-	3	3	3	3	3	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Effective from Session: 2025-26										
Course Code	MT523	Title of the Course	Statistical Machine Learning-II	L	Т	Р	С			
Year	II	Semester	IV	3	1	0	4			
Pre-Requisite	None	Co-requisite	None							

CO1: Summarize multivariate data using numerical and graphical tools, detect outliers, measure multivariate distances, and reduce data complexity using PCA, EFA, and MDS.

- PO1 Critical Thinking: Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 2-Moderate)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 3-High)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology. (Mapped as 2-Moderate)
- CO2: Apply discriminant analysis (LDA, QDA, logistic regression, Bayes), and perform clustering using similarity measures, hierarchical (Ward's) and non-hierarchical (K-means) methods, and perceptual mapping
- PO1 Critical Thinking: Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3-High)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 2-Moderate)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology. (Mapped as 2-Moderate)
- **CO3:** Interpret population and sample principal components, use biplots, apply orthogonal factor models, and estimate factor loadings and scores for dimension reduction.
- PO1 Critical Thinking: Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3-High)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 3-High)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology. (Mapped as 2-Moderate)

- **CO4:** Understand Bayesian inference for single/multi-parameter models, hierarchical models, and perform model checking, posterior predictive analysis, and model comparison.
- PO1 Critical Thinking: Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 2-Moderate)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped- 3-High)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology. (Mapped as 3-High)
- CO5 Use Bayesian computation (MCMC, Gibbs, Metropolis, HMC, STAN), and apply Bayesian regression with single/multiple predictors, hierarchical and generalized linear models.
- PO1 Critical Thinking: Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3-High)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 2-Moderate)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology. (Mapped as 2-Moderate)

Effective from Session: 2025- 26									
Course Code	MT556	Title of the Course	Optimization Techniques for Data Science	L	Т	Р	С		
Year	II	Semester	III	3	1	0	4		
Pre-Requisite	None	Co-requisite	None						
Course Objectives	To introduce optimiz game theory models management with a fe	ation techniques includ . The course also cov ocus on solution metho	ing linear programming, transportat ers job scheduling, replacement mo ds and cost analysis.	ion, as odels,	signn and i	nent, nvent	and ory		

	Course Outcomes								
CO1	Formulate and solve linear programming problem using different methods.								
CO2	Solve transportation and assignment problems using different methods, and its variations.								
CO3	Apply game theory concepts and decision-making techniques using dominance principle, graphical methods.								
CO4	Analyze scheduling and replacement models for job sequencing and item deterioration/failure analysis.								
CO5	Design and apply inventory models to optimize costs, EOQ, and single-period probabilistic inventory decisions.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Linear Programming Problem	Introduction Linear programming problem (LPP), Mathematical formulation of the problem, Graphical solution method, Canonical and standard forms of linear programming problem, the computational procedure of simplex method, Big-M method, Formulating dual problem.	08	1
3	Transportation & Assignment Problem	Introduction, Existence of solution in transportation problem, Solution of a transportation problem, Various method of finding initial basic feasible solution of transportation problem, Optimality criterion in transportation problem, assignment problem, Mathematical formulation of the problem, Solution method of assignment problem using Hungarian method and Variations in assignment problem.	08	2
5	Game Theory	Basic definitions, Two-person Zero-sum games, Some basic terms, The maximin-minimax principle, Games without saddle point, Graphical solution of $2 \times n$ and $m \times 2$ games, Dominance property, General solution of $m \times n$ rectangular games.	08	3
7	Sequencing & Replacement Problems	Basic assumptions, Processing of n-Jobs on 2-Machines, n-Jobs on 3- Machines and 2-Jobs on k-Machines. Replacement of items that deteriorate with time, Replacement of items that fails suddenly.	08	4
8	Inventory Models	Types of inventory models, Various costs associated with inventories, Deterministic inventory models, The concept of economic order quantity, Single period probabilistic inventory models	08	5

Reference Books:

1 H.A. TAHA "Operations Research- An Introduction" Pearson.

2. K.Swarup, P.K.Gupta and A. Manmohan, "Operations Research", S. Chand

3. Hiller and Lieberman, "Introduction to Operations Research", Mc Graw Hill Company.

4. J.K.Sharma, "Operations Research ", Pearson.

e-Learning Source:

https://www.youtube.com/watch?v=a2QgdDk4Xjw

https://www.youtube.com/results?search_query=sequencing+and+replacement+problems+br+nptel

https://www.youtube.com/watch?v=OKHiS0xDBb4&list=PLDlJ2nw7-dHb3oowMJfwgleor6dwWsVZ1

			Cou	rse Articu	lation M	atrix: (M	lapping of	COs with	POs and	l PSOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	2	-	-	-	-	-	2	2	3	2	3	3
CO2	3	-	-	-	-	-	2	3	2	3	2	3
CO3	2	-	-	-	-	-	3	3	3	2	3	2
CO4	3	-	-	-	-	-	2	3	2	3	2	2
CO5	2	-	-	-	-	-	2	2	3	2	3	3
		1- Lo	ow Corr	elation; 2	- Modera	ate Corre	lation; 3-	Substanti	al Correl	ation		
r							-					

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2025-26									
Course Code	MT556	Title of the Course	Optimization Techniques for Data Science	L	Т	Р	С		
Year	II	Semester	III	3	1	0	4		
Pre-Requisite	None	Co-requisite	None						

CO1: Formulate and solve linear programming problem using different methods.

- **PO1 Critical Thinking:** Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 2 High).
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 2 High).
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped as 2 High).
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3 High).
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields. (Mapped as 2 Moderate).
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3 Moderate).
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 3 Moderate).

CO2: Solve transportation and assignment problems using different methods, and its variations.

- PO1 Critical Thinking: Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3 Moderate).
- PO7 Self-directed and lifelong learning: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 2 High).
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped as 3 High).
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 2 High).
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields (Mapped as 3 Moderate).
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 2 Moderate).
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 3 Moderate).

CO3: Apply game theory concepts and decision-making techniques using dominance principle, graphical methods.

- PO1 Critical Thinking: Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 2- High).
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 3 High).
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped as 3- High).
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3 High).
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields (Mapped as 2 Moderate).
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3 Moderate).
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 2 Moderate).

CO4: Analyze scheduling and replacement models for job sequencing and item deterioration/failure analysis.

- PO1 Critical Thinking: Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3 Moderate).
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 3 High).
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped as 3 High).
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 2 High).
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields (Mapped as 3 Moderate).
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 2 Moderate).
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 2 Moderate).

CO5: Design and apply inventory models to optimize costs, EOQ, and single-period probabilistic inventory decisions.

- PO1 Critical Thinking: Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 2- High).
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 2 High).
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped as 2 High).
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3 High).
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields (Mapped as 3 Moderate).
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3 Moderate).
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 2 Moderate).

Effective from Session: 2025-26											
Course Code	CS569	569 Title of the Course Neural Network Analysis L T P									
Year	II	Semester	III	3	1	0	4				
Pre-Requisite	None	None Co-requisite None									
Course Objectives	Understand the fundamentals of neural networks and their mathematical foundations										
Course Objectives	Learn to implement and optimize deep neural network architectures										
	Analyze and	apply convolutional ne	eural networks for image-related tasks								
	Model seque	ential and time-series da	ata using recurrent neural networks and variants								
	Explore adva	Explore advanced neural models like autoencoders, GANs, and transformers									
	Apply mode	l evaluation techniques	and perform hyperparameter tuning effectively								

	Course Outcomes								
CO1	Gain foundational understanding of neural networks, including perceptrons, activation functions, and backpropagation.								
CO2	Develop skills to build, train, and optimize deep neural networks using various algorithms and tuning techniques.								
CO3	Apply convolutional neural networks for image recognition and classification using real-world datasets.								
CO4	Model and analyze sequential data using RNNs, LSTMs, and GRUs for time-series and language tasks								
CO5	Explore advanced architectures like GANs and transformers, and evaluate neural models for fairness.								

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Fundamentals of Neural Networks	Biological vs Artificial Neurons, Perceptron, Multilayer Perceptron (MLP), Activation Functions (ReLU, Leaky ReLU, Softmax), Forward Propagation, Cost Functions, Gradient Descent, Backpropagation Algorithm, Overfitting, Regularization (L1, L2, Dropout)	8	1
2	Deep Learning and Optimization	Deep Neural Networks, Data Augmentation, Optimization Algorithms (SGD, Momentum, RMSProp, Adam), Vanishing Gradient Problem, Exploding Gradient Problem	8	2
3	Convolutional Neural Networks (CNNs)	I Neural Convolution Operation, Filters and Feature Maps, Pooling Layers, CNN Architectures (LeNet, AlexNet, VGG, ResNet), Transfer Learning.		3
4	Recurrent Neural Networks and Sequence Modeling	RNN, LSTM, GRU, Bidirectional RNNs, Sequence-to-Sequence Models, Text Generation, Sentiment Analysis, Time-Series Prediction.	8	4
5	Advanced Topics and Interpretability	Attention Mechanism, Transformers (Basic Overview), Autoencoders, Variational Autoencoders (VAE), Generative Adversarial Networks (GANs).	8	5
Reference	Books:			
Deep Lear	ning by Ian Goodfellow, Y	Yoshua Bengio, and Aaron Courville – MIT Press		
Hands-On	Machine Learning with	Scikit-Learn, Keras, and TensorFlow by Aurélien Géron – O'Reilly Med	dia	
Neural Ne	tworks and Deep Learnir	ng by Michael Nielsen- (Online open-access book)		
Pattern R	ecognition and Machine I	Learning by Christopher M. Bishop – Springer		
e-Learning	g Source:			

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)												
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	
CO													
CO1	2	3			1			3	3	2	3	2	
CO2	3	3	2	3	3	3	3	3					
CO3	2		2					2	3		3	3	
CO4	2	2				2				3	2		
CO5	3	2	3	2	3			3	2	3	2	3	

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2025-26										
Course Code	CS609	Title of the	Big Data Engineering L T P							
Voor	п	Somester	Ш	3	1	0	1			
1 cai	11	Semester	111	5	1	U	-			
Pre-Requisite	None	Co-requisite	None							
Course Objectives	To study the	basic technologies that	forms the foundations of Big Data.							
	To study the	programming aspects of	of cloud computing with a view to rapid prototyping of cor	nplex	applica	tions.				
	To understan	d the specialized aspec	ts of big data including big data application, and big data a	inalvti	cs.					
	To study diff	erent types Case studie	s on the current research and applications of the Hadoop a	nd big	data ir	n indust	try.			

	Course Outcomes
C01	Student must be Able to understand the building blocks of Big Data.
CO2	Student must be able to articulate the programming aspects of cloud computing(map Reduce etc.)
CO3	Student must be able to understand the specialized aspects of big data with the help of different big data applications
CO4	Student must be able to represent the analytical aspects of Big Data.
CO5	Student must be know the recent research trends related to Hadoop File System, MapReduce and Google File System etc.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Data structures in Java	Data structures in Java: Linked List, Stacks, Queues, Sets, Maps; Generics: Generic classes and Type parameters, Implementing Generic Types, Generic Methods, Wrapper Classes, Concept of Serialization	8	1
2	Working with Big Data	Google File System, Hadoop Distributed File System (HDFS) – Building blocks of Hadoop (Namenode, Datanode, Secondary Namenode, Job Tracker, Task Tracker), Introducing and Configuring Hadoop cluster (Local, Pseudo- distributed mode, Fully Distributed mode), Configuring XML files	8	2
3	Writing MapReduce Programs	Understanding Hadoop API for MapReduce Framework, Basic programs of Hadoop MapReduce: Driver code, Mapper code, Reducer code, Record Reader, Combiner, Partitioner	8	3
4	Hadoop I/O	The Writable Interface, Writable Comparable and comparators, Writable Classes: Writablewrappers for Java primitives, Text, Bytes Writable, Null Writable, Object Writable and Generic Writable, Writable collections, Implementing a Custom Writable: Implementing a Raw Comparator for speed, Custom comparators	8	4
5	Pig and hive	Pig Architecture, Evaluating Local and Distributed Modes of Running Pig Scripts, Checking out the Pig Script Interfaces. Hadoop Data with Hive: Saying Hello to Hive, Seeing How the Hive is Put Together, Getting Started with Apache Hive, Examining the Hive Clients, Working with Hive Data Types, Creating and Managing Databases and Tables, Seeing How the Hive Data Manipulation Language Works, Querying and Analyzing Data.	8	5
Refere	ence Books:			
Big .	Java 4th Edition, Cay H	Iorstmann, Wiley John Wiley & Sons, INC		
Had	oop: The Definitive Gu	ide by Tom White, 3rd Edition, O'reilly, Hadoop in Action by Chuck Lam, MANNING	3 Publ.	
Had B.M	oop: The Definitive Gu Ielnyk,Bruce Brown, R	ide by Tom White, 3rd Edition, O'reilly Hadoop for Dummies by Dirk deRoos, Paul C afael Coss	.Zikopoulos, R	loman
e-Le	arning Source:			
http	s://nptel.ac.in/courses	/106104189		

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO1	PSO1	PSO2	PSO3	
CO	101	101	102	105	104	105	100	107	100	10)	1010	1	2	1501	1502	1505
CO1	2	2	1	1	1	_	-	-	-	_	_	_	_	2	2	
CO2	2	2	1	1	1	_	-	-	-	_	_	_	_	2	2	
CO3	2	2	1	2	1	-	-	-	-	—	_	-	_	2	2	
CO4	2	2	1	2	1	_	-	-	-	_	_	_	_	2	2	
CO5	2	2	2	3	2	_	_	_	-	-	_	_	_	2	2	

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2025- 26										
Course Code	MT560	Title of the Course	Structured Query Language	L	Т	Р	С			
Year	II	Semester	IV	3	1	0	4			
Pre-Requisite	None	Co-requisite	None							
Course Objectives	The course objective is to lea	he course objective is to learn the basic concept SQL								

	Course Outcomes
CO1	Understand relational database concepts and apply foundational SQL commands for data creation and retrieval.
CO2	Write queries to filter, sort, aggregate, and group data for analysis using SQL.
CO3	Perform complex data operations involving multiple tables, joins, subqueries, and set operations.
CO4	Utilize advanced SQL features such as window functions, CTEs, and transactions for data manipulation and performance optimization.
C05	Apply SQL in real-world data science scenarios including data cleaning, analysis, and reporting using BI tools and capstone projects.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Databases and SQL Basics	Overview of databases and their types (Relational vs Non-relational); Introduction to RDBMS (MySQL, PostgreSQL); SQL vs NoSQL (focus on relational); SQL syntax, data types; database objects – tables, views, indexes; creating/modifying tables; data insertion; basic SELECT queries.	08	1
2	Data Retrieval, Filtering, and Aggregation	Retrieving data with SELECT, WHERE, ORDER BY, DISTINCT; logical and comparison operators (AND, OR, NOT, =, $<>$, IN, BETWEEN, LIKE); handling NULLs, using LIMIT, OFFSET, aliases; aggregate functions (COUNT, SUM, AVG, etc.); GROUP BY, HAVING, nested aggregations; case study on sales data.	08	2
3	Working with Multiple Tables and Data Manipulation	JOINs (INNER, LEFT, RIGHT, FULL); self-joins, aliasing, UNION, INTERSECT, EXCEPT; subqueries – scalar, correlated, derived; real-world joins (e.g., customer-orders); INSERT, UPDATE, DELETE; transaction control (COMMIT, ROLLBACK, SAVEPOINT); constraints (PK, FK, NOT NULL, UNIQUE, CHECK); data integrity.	08	3
4	Advanced SQL Concepts and Data Analysis	Window functions (ROW_NUMBER, RANK, LAG, etc.); Common Table Expressions (CTEs), recursive queries; pivot/unpivot operations; temporary tables; indexing basics; data cleaning, handling outliers/missing values, feature engineering, data sampling; integration with Python (pandas.read_sql); use case – customer segmentation.	08	4
5	Capstone Project and Industry Applications	Capstone project using multi-table datasets; schema design for real-world problems; querying open data (Kaggle, BigQuery); connecting SQL with BI tools (Tableau, Power BI); SQL in interviews and job scenarios; project presentations and peer reviews.	08	5

Reference Books:
1. SQL for Data Scientists by Renee M. P. Teate - Beginner-friendly, focused on data science use cases.
2. Learning SQL (3rd Edition) by Alan Beaulieu – Comprehensive guide for mastering SQL from scratch.
3. SQL Cookbook by Anthony Molinaro – Practical solutions for real-world SQL challenges.
4. SQL in 10 Minutes, Sams Teach Yourself by Ben Forta – Quick, accessible SQL learning for beginners.
e-Learning Source:

https://onlinecourses.nptel.ac.in/noc22 cs91/preview

			Cour	se Articu	lation M	atrix: (M	apping of	COs with	POs and	l PSOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	2	-	-	-	-	-	3	3	3	3	3	3
CO2	2	-	-	-	-	-	3	3	3	3	3	2
CO3	3	-	-	-	-	-	3	3	3	3	3	2
CO4	3	-	-	-	-	-	3	3	3	3	3	3
CO5	3	-	-	-	-	-	3	3	3	3	3	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session	n: 2025- 26						
Course Code	MT560	Title of the Course	Statistical Machine Learning	L	Т	Р	С
Year	Ι	Semester	II	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	The course objective is to learn the basic concept Statistical Learning						

CO1: Understand relational database concepts and apply foundational SQL commands for data creation and retrieval.

- **PO1 Critical Thinking:** Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 2-Moderate)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 3-High)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields. (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 2-Moderate)

CO2: Write queries to filter, sort, aggregate, and group data for analysis using SQL.

- PO1 Critical Thinking: Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3-High)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 2-Moderate)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields. (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 2-Moderate)

CO3: Perform complex data operations involving multiple tables, joins, subqueries, and set operations.

- **PO1 Critical Thinking:** Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3-High)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 3-High)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields. (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 2-Moderate)

CO4: Utilize advanced SQL features such as window functions, CTEs, and transactions for data manipulation and performance optimization.

- **PO1 Critical Thinking:** Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 2-Moderate)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped- 3-High)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields. (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 3-High)

CO5 Apply SQL in real-world data science scenarios including data cleaning, analysis, and reporting using BI tools and capstone projects.

- **PO1 Critical Thinking:** Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3-High)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 2-Moderate)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields. (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 2-Moderate)

Effective from Sess	ion: 2025- 26						
Course Code	ourse Code MT559 Title o Course		Time Series Analysis	Т	Р	С	
Year	II	Semester	IV	3	1	0	4
Pre-Requisite	Basic knowledge of Probability and Statistics	Co-requisite	None				
Course Objectives	To introduce the fundamentals or model development, spectral analy analytical tools for modeling, inter	To introduce the fundamentals of statistical signal processing and time series analysis, focusing on model development, spectral analysis, and estimation techniques. The course aims to equip students with analytical tools for modeling, interpreting, and forecasting real-world signals and time-dependent data.					

	Course Outcomes				
CO1	Understand the basic concepts and components of time series data				
CO2	Analyze trend and seasonal components using statistical methods				
CO3	3 Apply autocorrelation techniques and estimation theories in time series analysis				
CO4	Develop and evaluate stochastic models for time series data				
CO5	Apply forecasting techniques to real-world time series data using case studies				

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO		
1	Introduction and Fundamentals	Introduction & Overview: Purpose and scope of the subject, Applications and importance, Key terminology and foundational concepts, Basic probability concepts, Random variables and distributions, Statistical measures: mean, variance, standard deviation, Central limit theorem (brief overview)	8	1		
2	Correlation Analysis	Auto and Cross-correlation Functions: Definition and interpretation, Mathematical formulation, Applications in time series and signal processing, Examples and visual illustrations	8	2		
3	Advanced Analysis	Partial Correlation Functions: Concept and need for partial correlation, Difference from simple correlation, Calculation methods, Real-world applications	8	3		
4 Time Series Modeling Models, A		Auto-regressive, Moving Average, and ARMA Models: Introduction to Time Series Models, Auto-Regressive (AR) Models, Moving Average (MA) Models, ARMA (Auto-Regressive Moving Average) Models	8	4		
5	Models for non- stationaryModels for Non-stationary Processes: Non-stationarity in time series, Modeling trends and seasonality, Introduction to heteroskedasticity, ARIMA (Auto-Regressive Integrated Moving Average) Models					

Reference Books:

Hamilton, J. D. (2020). Time series analysis. Princeton university press.

Cryer, J. D. (1986). Time series analysis (Vol. 286). Boston: Duxbury Press.

Kirchgässner, G., Wolters, J., & Hassler, U. (2012). Introduction to modern time series analysis. Springer Science & Business Media.

e-Learning Source:

https://onlinecourses.nptel.ac.in/noc25_cs71/preview

https://onlinecourses.nptel.ac.in/noc25_mg77/preview

			Cours	se Articul	lation Ma	atrix: (M	apping of	COs with	n POs an	d PSOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	3	-	-	-	-	-	1	2	3	2	1	1
CO2	3	-	-	-	-	-	1	2	3	2	2	2
CO3	2	-	-	-	-	-	1	2	3	3	2	2
CO4	3	-	-	-	-	-	2	3	3	3	3	3
CO5	3	-	-	-	-	-	2	3	3	3	3	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator

Sign & Seal of HoD

Р

0

С

4

Effective from Session: 2025-26 Title of the **Course Code** MT559 Time Series Analysis L Т Course Year Π Semester IV 3 1 Basic knowledge of Probability **Pre-Requisite Co-requisite** None and Statistics

CO1: Fundamental concepts of time series data and analysis.

- **PO1 -Critical Thinking:** Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3- High)
- **PO7 -Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 1-Low)
- **PO8** -Research related skills: Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped as 2-Moderate)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields (Mapped as 2-Moderate)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently (Mapped as 1-Low)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 1-Low)

CO2: Analyze trend and seasonal components using statistical methods

- **PO1 -Critical Thinking:** Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3- High)
- **PO7** -Self-directed and lifelong learning: Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 1-Low)
- **PO8** -Research related skills: Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped as 2-Moderate)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields (Mapped as 2-Moderate)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently (Mapped as 2-Moderate)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 2-Moderate)

CO3: Apply autocorrelation techniques and estimation theories in time series analysis

- PO1 -Critical Thinking: Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 2-Moderate)
- **PO7 -Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 1-Low)
- **PO8** -Research related skills: Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped as 2-Moderate)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently (Mapped as 2-Moderate)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 2-Moderate)

CO4: Develop and evaluate stochastic models for time series data

- **PO1 -Critical Thinking:** Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3-High)
- **PO7 -Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 2-Moderate)
- **PO8** -Research related skills: Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped as 3- High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 3-High)

CO5: Apply forecasting techniques to real-world time series data using case studies

- **PO1 -Critical Thinking:** Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3-High)
- **PO7 -Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 2-Moderate)
- **PO8** -Research related skills: Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped as 3- High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 3-High)

Effective from Session	: 2025-26						
Course Code	MT560	Title of the Course	Structured Query Language L		Т	Р	С
Year	II	Semester	IV	3	1	0	4
Pre-Requisite	None	Co-requisite	None				
Course Objectives	tives The course objective is to learn the basic concept SQL						

	Course Outcomes
CO1	Understand relational database concepts and apply foundational SQL commands for data creation and retrieval.
CO2	Write queries to filter, sort, aggregate, and group data for analysis using SQL.
CO3	Perform complex data operations involving multiple tables, joins, subqueries, and set operations.
CO4	Utilize advanced SQL features such as window functions, CTEs, and transactions for data manipulation and performance optimization.
C05	Apply SQL in real-world data science scenarios including data cleaning, analysis, and reporting using BI tools and capstone projects.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Databases and SQL Basics	Overview of databases and their types (Relational vs Non-relational); Introduction to RDBMS (MySQL, PostgreSQL); SQL vs NoSQL (focus on relational); SQL syntax, data types; database objects – tables, views, indexes; creating/modifying tables; data insertion; basic SELECT queries.	08	1
2	Data Retrieval, Filtering, and Aggregation	Retrieving data with SELECT, WHERE, ORDER BY, DISTINCT; logical and comparison operators (AND, OR, NOT, =, $<>$, IN, BETWEEN, LIKE); handling NULLs, using LIMIT, OFFSET, aliases; aggregate functions (COUNT, SUM, AVG, etc.); GROUP BY, HAVING, nested aggregations; case study on sales data.	08	2
3	Working with Multiple Tables and Data Manipulation	JOINs (INNER, LEFT, RIGHT, FULL); self-joins, aliasing, UNION, INTERSECT, EXCEPT; subqueries – scalar, correlated, derived; real-world joins (e.g., customer-orders); INSERT, UPDATE, DELETE; transaction control (COMMIT, ROLLBACK, SAVEPOINT); constraints (PK, FK, NOT NULL, UNIQUE, CHECK); data integrity.	08	3
4	Advanced SQL Concepts and Data Analysis	Window functions (ROW_NUMBER, RANK, LAG, etc.); Common Table Expressions (CTEs), recursive queries; pivot/unpivot operations; temporary tables; indexing basics; data cleaning, handling outliers/missing values, feature engineering, data sampling; integration with Python (pandas.read_sql); use case – customer segmentation.	08	4
5	Capstone Project and Industry Applications	08	5	

Reference Books:
1. SQL for Data Scientists by Renee M. P. Teate - Beginner-friendly, focused on data science use cases.
2. Learning SQL (3rd Edition) by Alan Beaulieu – Comprehensive guide for mastering SQL from scratch.
3. SQL Cookbook by Anthony Molinaro – Practical solutions for real-world SQL challenges.
4. SQL in 10 Minutes, Sams Teach Yourself by Ben Forta – Quick, accessible SQL learning for beginners.
e-Learning Source:

https://onlinecourses.nptel.ac.in/noc22 cs91/preview

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)											
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO1	2	-	-	-	-	-	3	3	3	3	3	3
CO2	2	-	-	-	-	-	3	3	3	3	3	2
CO3	3	-	-	-	-	-	3	3	3	3	3	2
CO4	3	-	-	-	-	-	3	3	3	3	3	3
CO5	3	-	-	-	-	-	3	3	3	3	3	2

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Name & Sign of Program Coordinator	Sign & Seal of HoD

Effective from Session: 2025- 26											
Course Code	MT560	Title of the Course	Statistical Machine Learning	L	Т	Р	С				
Year	Ι	Semester	II	3	1	0	4				
Pre-Requisite	None	Co-requisite	e None								
Course Objectives	The course objective is to learn the basic concept Statistical Learning										

CO1: Understand relational database concepts and apply foundational SQL commands for data creation and retrieval.

- **PO1 Critical Thinking:** Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 2-Moderate)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 3-High)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields. (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 2-Moderate)

CO2: Write queries to filter, sort, aggregate, and group data for analysis using SQL.

- PO1 Critical Thinking: Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3-High)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 2-Moderate)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields. (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 2-Moderate)

CO3: Perform complex data operations involving multiple tables, joins, subqueries, and set operations.

- **PO1 Critical Thinking:** Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3-High)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 3-High)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields. (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 2-Moderate)

CO4: Utilize advanced SQL features such as window functions, CTEs, and transactions for data manipulation and performance optimization.

- **PO1 Critical Thinking:** Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 2-Moderate)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped- 3-High)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields. (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 3-High)

CO5 Apply SQL in real-world data science scenarios including data cleaning, analysis, and reporting using BI tools and capstone projects.

- **PO1 Critical Thinking:** Apply advanced knowledge of data science to solve real-world data science problems (Mapped as 3-High)
- **PO7 Self-directed and lifelong learning:** Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings (Mapped as 2-Moderate)
- **PO8 Research related skills:** Recognize the need for and have the preparation and ability to engage in independent, life-long learning in the context of technological change (Mapped- 3-High)
- **PSO1:** Apply statistical, computational, and machine learning techniques to analyze and derive meaningful patterns from large and complex datasets. (Mapped as 3-High)
- **PSO2:** Develop domain-specific solutions by integrating data science tools with knowledge from healthcare, finance, marketing, or other relevant fields. (Mapped as 3-High)
- **PSO3:** Employ big data technologies and cloud platforms to manage and process large-scale data efficiently. (Mapped as 3-High)
- **PSO4:** Undertake research projects and contribute to innovation in data science by applying critical thinking and research methodology (Mapped as 2-Moderate)

Integral University, Lucknow

Effective from Session:2025	-26						
Course Code	CS566	Title of the Course Internship /Project/Minor Project in Kaggle				Р	С
			Competition				
Year	II	Semester	IV	0	0	8	8
Pre-Requisite	None Co-requisite None						
Course Objectives	The course object training and expo- solving, and ada learning and real practical problem proficient commu- the industrial pro-	tives are to develop posure to real-world ta ptability within an i -world applications b ns and contribute e unication and docum ject/internship	practical skills and professional competencies by asks and challenges, enhancing communication, ndustrial setting. Additionally, the course aims by applying theoretical concepts learned in acad effectively to industry projects. Lastly, studer entation skills in reports and presentations throu	y prov team to b emic nts w ighou	viding work oridge studi- vill d ut and	g hand , prob acad es to emon follo	ds-on olem- lemic solve strate wing
Notes Ag nant of the MC	o Data Coionas In	townalin / Ducient ater	donte will avalance an anim out with on an above	a tool	minai	much	10000

Note:- As part of the M.Sc. Data Science Internship/Project, students will explore, experiment with, or analyze technical problems across various domains of Computer Science and Engineering. This includes tasks such as software development, algorithm design, system design, software testing, data analysis, artificial intelligence, and its applications. The assessment for the Internship/Project/Minor Project in Kaggle Competition will be conducted both internally within the department and externally, following established procedures. Additionally, students are required to submit a detailed project report by the end of the fourth semester.

Course Outcomes										
CO1	Develop practical skills relevant to the industry through hands-on training and exposure to real-world tasks and challenges. Enhance professional competencies such as communication, teamwork, problem-solving, and adaptability within an industrial setting.									
CO2	Apply theoretical concepts learned in academic studies to solve practical problems and contribute effectively to projects within the industry, bridging the gap between academic learning and real-world applications.									
CO3	Work on Real World experience with Kaggle Datasets and demonstrate Proficient Communication and documentation Skills in Reports and Presentations Throughout Industrial Training / Internship									

Unit No.	Skill Set	Content	Mapped CO
1	Practical Skill Development Professional Growth	Develop practical skills relevant to the industry through hands-on training and exposure to real- world tasks and challenges. Enhance professional competencies such as communication, teamwork, problem-solving, and adaptability within an industrial setting.	1
2	Application of Theoretical Knowledge	Apply theoretical concepts learned in academic studies to solve practical problems and contribute effectively to projects within the industry, bridging the gap between academic learning and real-world applications.: Defining and calling functions, Function arguments and return values, Importing and using modules, Creating and using custom modules.	2
3	Real World Experience	Demonstrate Proficient Communication/Practice ML Algorithms and work on real datasets and business problems and present documentation Skills in Reports and Presentations Throughout and Following Industrial Training / Internship.	3

Reference Books:

Python for Data Analysis" by Wes McKinney: McKinney, W. (2017). Python for Data Analysis. O'Reilly Media.

Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking" by Foster Provost and Tom Fawcett: Provost, F., & Fawcett, T. (2013). *Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking*. O'Reilly Media.

Bayesian Data Analysis" by Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and Donald B. Rubin: Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). *Bayesian Data Analysis*. CRC Press.

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)										
PO- PSO	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PSO1 PSO2 PSO3 PSO4											
CO												
CO1	2	3	1	3	1	0	1	2	3	3	2	2
CO2	3	3	1	2	2	2	2	2	3	3	3	2
CO3	2	2	2	2	0	2	3	2	2	2	1	2

Name & Sign of Program Coordinator	Sign & Seal of HoD

T

Г

Effective from Session: 2025- 26										
Course Code	CS568	Title of the Course	tle of the Course Cloud Computing Basics L T P							
Year	II	Semester	IV	3	1	0	4			
Pre-Requisite	None	Co-requisite	None							
Course Objectives	 To learn how to use Cloud Services. ● To implement Virtualization ● To implement Task Scheduling algorithms. ● Apply Map-Reduce concept to applications. ● To build Private Cloud. ● Broadly educate to 									
	know the impact of engineering on legal and societal issues involved									

	Course Outcomes									
CO1	Analyze the Cloud computing setup with it's vulnerabilities and applications using different architectures.									
CO2	Design different workflows according to requirements and apply map reduce programming model.									
CO3	Create combinatorial auctions for cloud resources and design scheduling algorithms for computing clouds									
CO4	Assess cloud Storage systems and Cloud security, the risks involved, its impact and develop cloud application									
CO5	Broadly educate to know the impact of engineering on legal and societal issues involved in addressing the security issues of cloud computing.									

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction; Principles of Parallel and Distributed Computing	Cloud computing at a glance; Historical Developments; building Cloud computing environment; computing platforms and Technologies Principles of Parallel and Distributed Computing: Eras of Computing; parallel Vs. distributed computing; elements of distributed computing; technologies of Distributed computing	8	1
2	Virtualization and Cloud Computing Architecture	8	2	
3	Concurrent Computing and High-Throughput Computing and Map Reduce Programming	Introducing parallelism; programming with threads; multithreading with Aneka; applications; Task Computing; task based Application Model; Task based Programming; Data Intensive Computing; Technologies; Aneka Map Reduce Programming	8	3
4	Cloud Platforms in Industry and Cloud Applications	Amazon Web services; Google App Engine; Microsoft Azure; Cloud scientific Applications; Business and Consumer Applications	8	4
5	Advanced Topics in Cloud Computing and Cloud Security	Energy Efficiency Clouds; Market based management clouds; Federated Clouds; Third Party Cloud Services; Infrastructure Security: Network level security, Host level security, and Application-level security; Data security and Storage	8	5
Refer	ence Books:			
1. Edi	tors: RajkumarBuyya, James Broł	perg, Andrzej M. Goscinski, Cloud Computing: Principles and Paradigms	, Wile, 201	l
2. Bar	rie Sosinsky, Cloud Computing B	ible, Wiley-India, 2010		
3. Edi	tors: Nikos Antonopoulos, Lee Gi	llam, Cloud Computing: Principles, Systems and Applications, Springer,	2012	
4. Ror	ald L. Krutz, Russell Dean Vines	, Cloud Security: A Comprehensive Guide to Secure Cloud Computing, V	Wiley-India	, 2010
e-Lea	rning Source:			

			Course Articulation Matrix: (Mapping of COs with POs and PSOs)									
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4
CO												
CO1	2	3			1			3	3	2	3	2
CO2	3	3	2	3	3	3	3	3				
CO3	2		2					2	3		3	3
CO4	2	2				2				3	2	
CO5	3	2	3	2	3			3	2	3	2	3

I

Г

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation Т

Sign of Fregram Coordinator	Sign & Seal of HoD